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Introduction

MULTIPHASE problems such as particle-laden flows and
sprays are often analyzed by using a mixed Lagrangian-

Eulerian formulation. In this approach, particles—liquid droplets
or solid matter (henceforth referred to as the dispersed phase)—are
described from the Lagrangian point of view, and the surrounding
fluid (henceforth referred to as the continuum phase) is described
from the Eulerian point of view. The governing equations for the
dispersed phase is a system of ordinary differential equations
(ODEs), and those for the continuum phase are the Navier-Stokes
equations. As used here, the Navier-Stokes equations include the
continuity, momentum, and energy equations.

The system of ODEs describing the dispersed phase is an initial-
value problem (IVP). However, this IVP differs from typical IVPs
in that it is coupled to the continuum-phase equations through
terms that describe the exchange of mass, momentum, and energy
between the dispersed and continuum phases. Typically, the data
used to compute the Lagrangian formulation lag behind those in
the Eulerian formulation by one time step. This procedure works
well if the time-step size used is small when compared with the
time scales relevant to the problem.

By lagging behind one time step, any explicit method (e.g., the
second- or fourth-order accurate Runge-Kutta methods) can be
used to generate solutions to the Lagrangian formulation (see, e.g.,
Raju and Sirgnano1). This is because for explicit methods, data
from the Eulerian formulation are needed only at the current time
level where the location of each particle or group of particles is
known so that those data can be obtained by interpolating the solu-
tion of the Eulerian formulation. Though explicit methods can be
implemented easily, they can impose severe limitations on the
maximum time-step sizes that can be used. As will be shown later,
the smaller the particle size, the more severe is this limitation on
the time-step size. If the time-step size limitation is too severe,
then implicit methods are needed.

For the current IVP, the construction of implicit methods is com-
plicated by the fact that data from the Eulerian formulation are
needed at both the current and new time level. Since the location of
each particle or group of particles at the new time level is
unknown, such data cannot be obtained by interpolation. Despite
this difficulty, implicit methods for the current type of IVPs have
been constructed (see, e.g., Dukowicz2). However, methods con-
structed so far are complicated and iterative in nature. Also, they
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are designed to be used with pressure-based algorithms (e.g., SIM-
PLE3 and PISO4). In this study, a noniterative implicit method is
presented that can be used with pressure- as well as density-based
algorithms.

Methodology
To illustrate the noniterative implicit method developed in this

study, consider a dispersion of noninteractiing solid particles in an
isothermal flow in which the added-mass effect can be neglected.
For such a dispersion, the following six coupled ODEs govern the
position and motion of the ith particle:
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At
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= v.
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In the foregoing equations, pf, vt, and rt are, respectively, the den-
sity, velocity, and position vector of the /th particle; p and V are,
respectively, the density and velocity of the continuum phase at rf;
Fi is the net force acting on the ith particle due to interphase drag
[note that Ft = Ffa, vt) because V = Vfa)]; and CDi is the inter-
phase drag coefficient. Finally, At and fy are, respectively, the
cross-sectional area and volume of the ith particle.

The essence of the new implicit method is as follows. By using a
second-order accurate in time implicit time-differencing formula,
Eqs. (1) and (2) become

AT?n + l

n + l

where
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Av?+1 =

(6)
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(8)

(9)

In the foregoing equations, the superscript n denotes the current
time level, and the superscript n + 1 the new time level. The
unknowns in these same equations are r and v at the (n + l)th time
level. The difficulty in solving the aforementioned equations is
associated with Fn+l in Eq. (7) that involve quantities from the
continuum phase.

Equations (6) and (7) form a system of six nonlinear algebraic
equations. A solution to this nonlinear system can be obtained by
using the Newton-Raphson method that requires iteration at each
time step. Alternatively, we can linearize this nonlinear system so
that iterations are not required.

The term creating the nonlinearities is Fn+l in Eq. (7). This term
can be linearized in time by using the Taylor series (i.e., F = F +
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(3F/9r)Af + At2) and noting that @F/dt) = (3F/3r)@r/3f) + (dF/
av)(av/ao to give

(10)
drl 3v?

where Arn+l and Avn+l are given by Eqs. (8) and (9), and

>« av ai

~i CV "\ 17o/^ orz z

_ a« av

(11)

(12)

The linearization just given is second-order accurate in time.
Since this is the same order of accuracy as the time-differencing
formula, the error incurred by linearization is comparable to that
created by time-differencing. This justifies the linearization proce-
dure.

The terms in Eq. (11) can readily be obtained by analytically
differentiating Eq. (3) with respect to w, v, and w (the *, y, and z
components of the particle velocity). In a similar manner, the par-
tial derivative of F with respect to V that appear in Eq. (12) can
easily be obtained. The difficulty is in evaluating the partial deriva-
tive of V with respect to r that appear in Eq. (12). This difficulty
arises because V is given within the Eulerian framework, whereas r
is provided within the Lagrangian framework. Here, this term is
evaluated as follows:

av"
(13)

In the foregoing equation, the derivative on the left-hand side is
Lagrangian, and the gradient operator on the right is Eulerian. The
dot product gives the component of the Eulerian gradient in the
direction where the ith particle is moving.

This completes our description of the implicit algorithm devel-
oped in this study.

Results
To examine the implicit algorithmdeveloped in this study,

numerical solutions were obtained for a dilute particle-laden flow
in a passage bounded by one straight wall and one wavy wall in
which all particles were spherical and had a finite velocity relative
to the continum phase at the inflow boundary so that the right-hand
side of Eq. (2) does not vanish. Figure la shows the two-dimen-
sional spatial domain and grid system used. The grid system used
was generated by an algebraic grid-generation technique based on
transfinite interpolation.5 For this test problem, it was assumed that
only the continuum phase can affect the dispersed phase, i.e., the
interaction is one-way. As a result, the velocity field for the contin-
uum phase can be obtained independently of the dispersed phase.
Here, the velocity field was obtained by the PISO algorithm4 with
QUICK6 differencing used for the convection terms. The velocity
field obtained is shown in Fig. Ib. Note that this velocity field con-
tains regions with recirculating flows.

Solutions for the dispersed phase were obtained by the implicit
algorithm described in the previous section and the second-order
Runge-Kutta explicit method. The code embodying the explicit
method was developed by Raju and Sirignano.1 Solutions were
obtained by this code because it has been tested and can be used to
assess the robustness, accuracy, and efficiency of the implicit algo-
rithm developed in this study.

Fig. 1
field.

Test problem: a) spatial domain and grid system, b) velocity

When employing the explicit code of Raju and Sirignano for the
test problem, the maximum time-step size Armax that can be used in
order to obtain stable numerical solutions was found to be a func-
tion of the particle radius rp as shown here:

(urn): 10.0
10-5

1.0
io-7 0.1

io-9 0.01
io-11 0.001

io-13

When the implicit algorithm was used for the test problem,
numerical experiments indicated that a time-step size of 2 x 10~4 s
can be used with a particle radius as small as 0.001 um. Thus, the
implicit method developed permits much larger time-step sizes.

The reason Armax decreases with rp for explicit methods has to do
with the stability criterion illustrated next. Suppose CDi in Eq. (3)
is given by 64/Re = 32u/plV- vt\rp where \L is the dynamic viscos-
ity of the continuum phase at rt. For the Euler explicit method that
is the first step of the second-order Runge-Kutta method, it can
easily be shown that the stability criterion is given by

A f < - (14)

Equation (14) clearly shows that as rp decreases, the maximum
At that can be used decreases. It turns out that the foregoing stabil-
ity criterion is consistent with the results obtained by using the
code of Raju and Sirignano described earlier.

With the robustness of the implicit algorithm established, we
now discuss its accuracy. The accuracy of the implicit algorithm
was tested by comparing results that it generates with those
obtained by the explicit code of Raju and Sirignano. These tests
used particles with a radius of 10 um so that a time-step size of
W~5 s can be used by both algorithms. The results of these tests
showed that the implicit algorithm gave results within 0.1% of
those generated by the explicit code.

The CPU-time requirement for the implicit algorithm was found
to be similar to that of the explicit algorithm even though the
explicit algorithm does not require the solutions of linear simulta-
neous equations. This is because the CPU time needed to solve
Eqs. (1) to (5) accounts for only a small part of the overall CPU-
time requirement. The most expensive parts of the overall algo-
rithm are associated with identifying the cells in which the parti-
cles are located and interpolating data from the continuum phase.
Thus, the implicit method developed here would be more efficient
than explicit methods for problems in which the maximum time-
step size based on accuracy exceeds the maximum time-step size
based on the stability of the explicit methods. An example of such
a problem is liquid sprays in propulsion systems in which droplet
sizes vary over a very wide range.
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Introduction

WHILE of fundamental interest because of the complex fluid
mechanisms involved, both static and dynamic airfoil stall

are also important in a variety of applications including high
angle-of-attack aerodynamics, maneuvering aircraft, control sur-
face motions, helicopter rotors, wind turbines, and turbomachin-
ery. Moreover, a critical need exists for turbulence models which
provide efficient and accurate simulation of such flows for practi-
cal numerical computations. The objective of the present work is
to examine the adequacy of two turbulence models for the calcula-
tion of both static and dynamic airfoil stall flowfields by compari-
son with each other as well as with experimental data. For this pur-
pose, the commonly used Baldwin-Lomax1 algebraic model and
the two-equation fc-e formulation of Launder and Sharma,2 as gen-
eralized by Gerolymos,3 were selected. The two-equation model
requires no predefined turbulence length scales or wall functions,
and because it includes low-Reynolds-number terms, both k and e
vanish at solid surfaces. Thus the formulation is attractive for the
computation of flowfields about complex three-dimensional con-
figurations, or for applications on unstructured meshes.

Results
Experimental conditions of the investigation by Lorber and

Carta4 were chosen to be simulated numerically. This selection
was prompted by the comprehensive set of data that are available
at high Reynolds number for both steady and unsteady flows. Two
Mach numbers were considered, Mx = 0.2 and Mx = 0.4, with cor-
responding chord Reynolds numbers of 2X106 and 4X106. The
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wind-tunnel model consisted of a Sikorsky SSC-A09 supercritical
section with a 43.9-cm chord.

The governing equations were taken to be the unsteady com-
pressible two-dimensional Navier-Stokes equations written in
mass-averaged variables and expressed in nondiinensional strong-
conservation form. Steady and unsteady solutions to these equa-
tions were obtained by an approximately factored Beam-Warming5

finite difference algorithm. Complete details of the calculations
including the governing equations, boundary conditions, numeri-
cal method, generation of the (303 X131) mesh, and grid resolution
study may be found in Ref. 6.

At Moo = 0.2, 17 cases were considered for angles of attack be-
tween 0 and 30 deg. Aerodynamic force coefficients for these cases
appear in Fig. 1 where the computations employing both the fc-e
and Baldwin-Lomax models are compared to the experimental
data. Above an angle of attack of 20 deg, no steady solutions were
obtainable with the Baldwin-Lomax model. Although the &-e equa-
tions fail to predict the abrupt onset of stall that is evident experi-
mentally, they do produce a more favorable comparison with drag
and moment than the algebraic model.

Eleven steady solutions employing the &-e equations for 0 < a <
20 deg at Mx = 0.4 were generated numerically. Once again, with
the Baldwin-Lomax model no steady results could be obtained for
a > 9 deg. Aerodynamic force coefficients for these cases are
shown in Fig. 2. The computations generally compare more favor-
ably with the data than was true for MOO = 0.2. It is also noted that
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Fig. 1 Steady aerodynamic force coefficients for Afoo= 0.2.


